Case studies of filtering techniques in multirate iterative learning control

نویسندگان

  • Bin Zhang
  • Yongqiang Ye
  • Keliang Zhou
  • Danwei Wang
چکیده

Iterative learning control (ILC) is a simple and efficient solution to improve tracking accuracy for systems that execute repetitively the same tracing operation. For engineering applications of ILC, the main concern is the monotonic decay of tracking errors, in the sense of infinity norm or peak error, along the trials. Low cost in implementation and robustness in performance are also critical factors. To achieve these important but sometimes contradicting goals, several multirate ILC schemes have been developed, in which different data sampling rates are used for feedback online loop and feedforward ILC offline loop. That is, multirate ILC uses a different (often lower) rate from the sampling rate of a feedback system to update input. Before the input signal is applied to the system for the next trial, it is upsampled to reach the original sampling rate. Since downsampling will cause distortion of frequency spectra, anti-aliasing and anti-imaging filters and signal extension are used together with downsampling and upsampling operations. In this paper, these technologies are integrated with three different multirate ILC schemes, pseudo-downsampled ILC, two-mode ILC, and cyclic pseudo-downsampled ILC, to achieve better performance. A series of experimental results on an industrial robot are presented to demonstrate the efficiency of multirate ILC schemes and compare the performance. The results demonstrate that multirate ILC schemes are able to achieve not only monotonic learning transient, but also much better tracking accuracy than conventional one-step-ahead ILC schemes. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

Comparison Studies on Anti-Aliasing/Anti-Imaging Filtering and Signal Extension in Multi-Rate ILC

Multirate iterative learning control (ILC) systems have different sampling rates for feedback online loop and feedforward (or ILC) offline loop. The implementation of multirate ILC requires to downsample the signal first and, after processing, upsample the signal again. In the process of downsampling and upsampling, aliasing and imaging may occur and need to be handled properly. In this paper, ...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Higher-order Iterative Learning Control by Pole Placement and Noise Filtering

Abstract: This paper makes a comprehensive examination of likely sources that may give rise to higher-order iterative learning control (ILC) laws. Possibilities considered are higher-order model structure, improved learning speed, minimization of various quadratic cost functions, ILC designs based on predictive control, pole placement, direct and indirect adaptive control, and noise filtering. ...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015